

## Forum Mini Review

# Redox Regulation by Thioredoxin in Cardiovascular Diseases

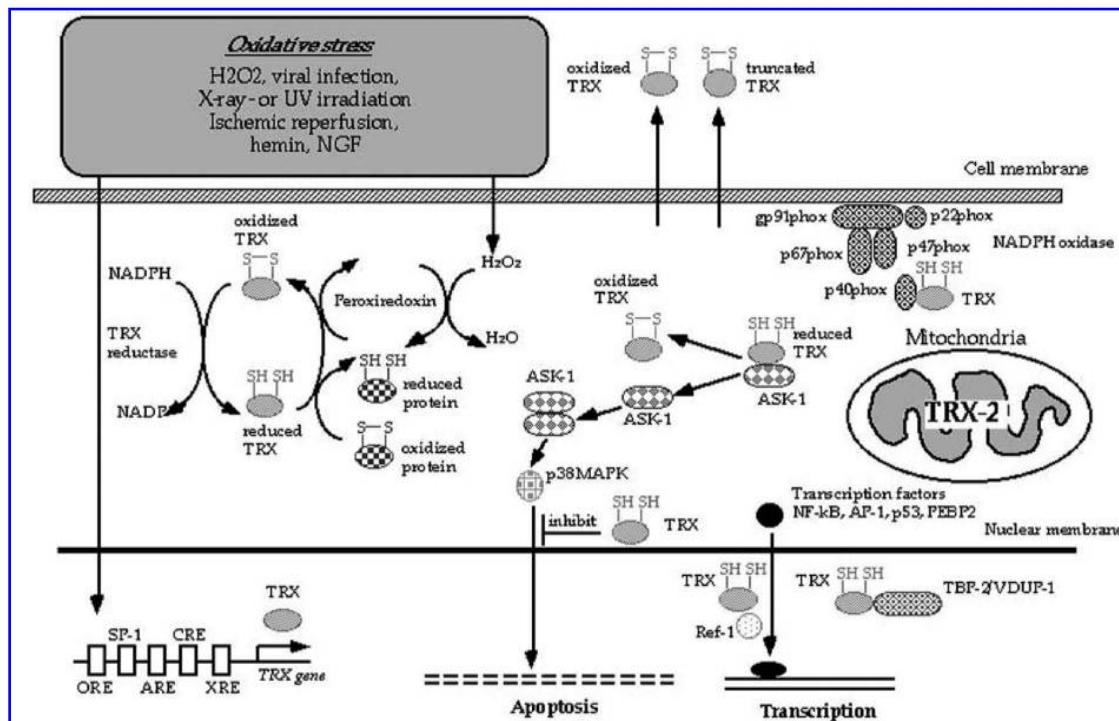
KEISUKE SHIOJI,<sup>1</sup> HAJIME NAKAMURA,<sup>2</sup> HIROSHI MASUTANI,<sup>2</sup> and JUNJI YODOI<sup>2</sup>

### ABSTRACT

Increasing evidence has indicated that the modulation of intracellular redox states has important aspects to cellular events, such as cellular proliferation, activation, growth inhibition, or death via the regulation of intracellular signal transduction and gene expression. Thioredoxin (TRX) is a multifunctional stress-inducible protein, which protects cells from various types of stresses. TRX has not only a scavenging activity of reactive oxygen species, but also a regulating activity of various intracellular molecules including transcription factors. We demonstrated that the serum TRX levels are correlated with the severity of heart failure, and are negatively correlated with left ventricular ejection fractions of patients with heart failure. The expression of TRX is enhanced in endothelial cells and macrophages in human atherosclerotic plaques, in balloon-injured rat arteries, and in damaged cardiomyocytes of rats with acute myocarditis. Overexpression of TRX in transgenic mice attenuates adriamycin-induced cardiotoxicity by reducing oxidative stresses. These findings suggest that TRX and the redox system modulated by TRX have an important role in cellular defense against oxidative stress in cardiovascular diseases. *Antioxid. Redox Signal.* 5, 795–802.

### INTRODUCTION

HUMAN THIOREDOXIN (TRX) was cloned as adult T-cell leukemia-derived factor (ADF), an inducer of interleukin-2 receptor  $\alpha$ -chain produced by human T-cell leukemia virus type-I-transformed cells (44, 51, 56). TRX was originally reported as a hydrogen donor for ribonucleotide reductase, an essential enzyme for DNA synthesis in *Escherichia coli*. TRX is a 12-kDa protein that has disulfide-reducing activity. Two cysteine residues of conserved active site sequence, -Cys-Gly-Pro-Cys- (Cys32 and Cys35), serve for its reducing activity. Reduced TRX has dithiols, and oxidized TRX has a disulfide bond in this active site. Oxidized TRX is reduced by NADPH and TRX reductase (16, 28). Recently, Haendeler *et al.* (8) reported that S-nitrosylation at Cys69 is required for scavenging reactive oxygen species (ROS), for preserving the redox regulatory activity, and for the anti-apoptotic function of TRX. The TRX system, composed of TRX reductase, TRX, and peroxiredoxin, is important in regulating the redox balance. Increasing evidence suggests that redox (reduction and oxida-


tion) regulation by the TRX system in addition to the glutathione system plays important roles in biological responses against oxidative stresses.

TRX is a stress-inducible ubiquitous protein, which protects cells from various types of stresses, *e.g.*, viral infection, exposure to ultraviolet light, X-ray irradiation, and hydrogen peroxide (26, 28) (Fig. 1). Recent studies showed that ROS generated by a variety of oxidative stresses are not only cytotoxic to the cells but also important in signal transductions of cellular activation and cell death. It is well accepted that relatively low levels of oxidative stress promote cellular proliferation rather than cause degeneration or cell death. The intracellular redox balance regulated by reducing factors, including TRX, has an important role in cellular apoptosis or death (52).

TRX negatively regulates activation of p38 mitogen-activated protein (MAP) kinase (10) and apoptosis signal-regulating kinase-1 (ASK-1) (37). Reduced TRX binds to ASK-1 and inhibits its activation. When TRX is oxidized by ROS, the binding between TRX and ASK-1 is dissociated, and ASK-1 is activated to transduce the signal of apoptosis (Fig. 1). TRX was

<sup>1</sup>Department of Cardiovascular Medicine, Graduated School of Medicine, Kyoto University, Kyoto, Japan.

<sup>2</sup>Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan.



**FIG. 1. Schema of biological functions of TRX.** The TRX system (TRX, TRX reductase, and NADPH) reduces peroxiredoxin or oxidized proteins. Peroxiredoxin catalyzes the reduction of hydrogen peroxide. TRX has interactions with ASK-1, the p38 MAPK kinase (MAPK) pathway, or p40phox (TBP-1) in cytosol. Oxidative stresses induce TRX expression and nuclear translocation of TRX. In the nucleus, TRX has interactions with transcription factors or TBP-2/VDUP-1. Oxidized TRX or truncated TRX is considered to be extracellularly secreted.

reported to induce ASK-1 ubiquitination and degradation to inhibit ASK-1-induced apoptosis (22).

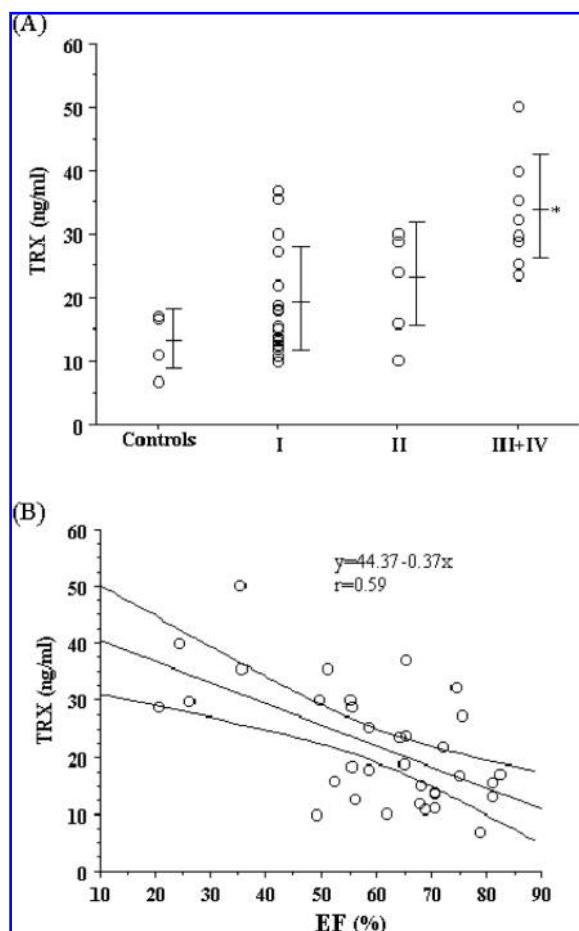
TRX promotes DNA binding of transcription factors such as activator protein-1 (AP-1) (13), nuclear factor- $\kappa$ B (NF- $\kappa$ B) (9, 14), p53 (53), and phosphatidylethanolamine-binding protein-2 (PEBP-2) (2). DNA binding of AP-1 is modified by redox factor-1 (Ref-1), the activity of which is regulated by TRX (13). TRX reduces the cysteine 62 residue of NF- $\kappa$ B, which is important for the binding of NF- $\kappa$ B to DNA. Overexpression of TRX in the cytoplasm suppresses NF- $\kappa$ B activation, whereas overexpression of TRX in the nucleus enhances DNA binding of NF- $\kappa$ B (14). Overexpression of Ref-1 inhibits hypoxia or tumor necrosis factor-induced endothelial cell apoptosis through NF- $\kappa$ B-independent and -dependent pathways (9). The TRX-Ref-1 cascade interacts with p53, a gatekeeper against DNA damage and an inducer of G1 arrest, to afford cells time to repair damaged cells, and up-regulates p53-dependent p21 expression in response to oxidative stress (53). Accordingly, the redox status balanced by generated ROS and endogenous antioxidants plays a crucial role in the regulation of signal transduction in biological responses.

The gene encoding human TRX was reported to be mapped to 9q31 on chromosome 9 (11). The promoter region of the human TRX gene has the SP-1 site, the cyclic AMP responsive element (CRE), and the oxidative responsive element (ORE) in the 5' flanking sequence (19, 48). TRX is induced by hemin through the binding of a transcription factor, nuclear factor-

erythroid 2-related factor 2 (Nrf2), to the antioxidant response element (ARE) (20). Nerve growth factor (NGF) activates the TRX gene through a regulatory region positioned from -263 to -217 bp, containing the CRE. Insertion of a mutation in the CRE in this region abolishes the response to NGF. NGF also induces binding of CRE binding protein to the CRE of the TRX promoter (4). The promoter sequences of the TRX gene also contain SP-1 and the xenobiotics responsive element (XRE) (Y.W. Kwon *et al.*, manuscript submitted).

## PLASMA/SERUM TRX LEVEL AS AN OXIDATIVE STRESS MARKER IN CARDIOVASCULAR DISEASES

TRX is secreted from cells by a leaderless pathway. Since TRX was cloned as ADF, a cytokine-like factor, there is accumulating evidence that TRX shows cytokine-like functions. Exogenous TRX enhances the cell growth by itself and shows comitogenicity with other cytokines. TRX also shows chemokine-like functions (5). Elevations of serum TRX levels are observed in patients suffering from oxidative stress, for example, in patients with HIV (27, 30), rheumatoid arthritis (24, 58), severe burn injury (1), or hepatitis C virus infection (43). It is suggested that TRX secretion into plasma may be a kind of host defense response against oxidative stress. Truncated TRX (1-80), which


was isolated as eosinophil cytotoxicity-enhancing factor, was reported to act as an inducer of cytokine expression (Fig. 1) (35).

We previously documented that the level of plasma oxidized TRX is increased during reperfusion of the postcardioplegic heart because of systematic oxidative stress (29). We investigated the clinical significance of the serum TRX levels of patients with heart failure (21). The serum TRX level in patients with III and IV functional classes of New York Heart Association (NYHA) was significantly higher than in the control subjects (Fig. 2A). In addition, the serum TRX levels are negatively correlated with left ventricular ejection fractions of the patients (Fig. 2B). The serum TRX levels are elevated

in patients with acute coronary syndrome or dilated cardiomyopathy compared with the control.

Recently, we reported that the serum level of TRX is high during the acute phase, and slowly decreases during the chronic phase in a patient with fulminant myocarditis (41). Circulating TRX inhibits the neutrophil recruitment into the inflammatory site in the mouse air pouch model (31). Therefore, it is possible that the elevation of serum TRX in patients with myocarditis is associated with not only the host defense response against oxidative stress, but also the inhibition of the neutrophil recruitment into the myocarditis lesion.

In conclusion, these results suggest the possible association between the elevated level of TRX and the severity of heart failure. The measurement of plasma/serum TRX levels is one of the useful tools to check how much the host is suffering from oxidative stress in patients with heart failure.



**FIG. 2. Serum TRX levels with heart failure.** (A) Comparison of serum TRX levels among patients with NYHA functional class I ( $n = 17, 19.1 \pm 8.5$  ng/ml), II ( $n = 5, 21.9 \pm 8.5$  ng/ml), and III plus IV ( $n = 8, 33.3 \pm 8.6$  ng/ml) and control subjects ( $n = 4, 13.0 \pm 4.9$  ng/ml). Significant differences were found between patients with NYHA III plus IV and control subjects, but no significant differences were found between patients with NYHA I or II and control subjects. (B) The relation between serum TRX levels and left ventricular ejection fractions (EF). The serum TRX levels were inversely correlated with EF ( $r = 0.59, p < 0.001$ ) in all subjects. Bold lines indicate  $\pm 95\%$  reliability zone.

### UP-REGULATION OF TRX IN ATHEROSCLEROSIS

We reported that the expressions of TRX protein and TRX mRNA are enhanced in endothelial cells and macrophages in human atherosclerotic plaques, but not in nonatherosclerotic lesions (45). In atherosclerotic lesions of autopsy samples of human coronary arteries, Okuda *et al.* (34) reported that infiltrating macrophages highly express TRX in addition to glutaredoxin (GRX), which catalyzes protein disulfide reductions coupled with glutathione, glutathione reductase, and NADPH. The expressions of TRX protein and TRX mRNA are also increased after injury in the neointimal regenerating endothelial cells of balloon-injured rat arteries (45).

Accordingly, the development of atherosclerosis, neointimal hyperplasia after vascular injury, may be, at least in part, regulated by the cellular redox states via thiol-disulfide oxidoreductases such as TRX and GRX.

### UP-REGULATION OF TRX IN INFLAMMATORY MYOCARDITIS

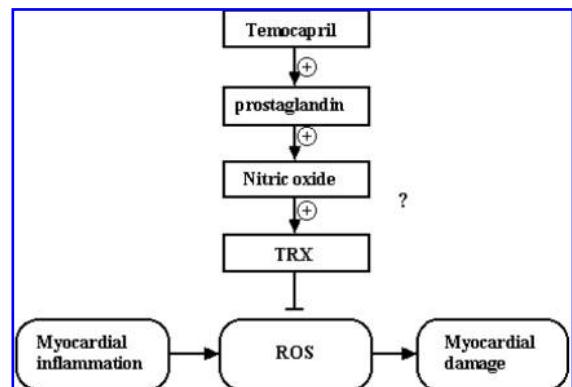
Excessive production of ROS at the inflammatory site contributes to the inflammatory process by induction of the expression of adhesion molecules, proinflammatory cytokines, and chemoattractants. An ROS scavenger such as superoxide dismutase has a therapeutic potential for myocarditis (12).

We demonstrated that the expression of TRX protein is up-regulated in association with an oxidative stress marker, 8-hydroxy-2'-deoxyguanosine, in infiltrating cells and damaged myocytes in rats with giant cell myocarditis during the acute stage (39). Since the expression of NF- $\kappa$ B is also up-regulated in damaged myocytes, TRX may have a protective role against the progressive myocardial damage in cardiomyocytes during acute inflammatory myocarditis through the activation of NF- $\kappa$ B. We also reported that the expression of TRX protein is increased in inflammatory cells and cardiomyocytes of left ventricular biopsy samples in a patient with fulminant myocarditis (41). Accordingly, acute inflammatory myocardi-

tis may be, at least partly, regulated by the cellular redox state via TRX.

## CARDIOVASCULAR DRUGS HAVE CYTOPROTECTIVE EFFECTS IN CARDIOMYOCYTES THROUGH THE UP-REGULATION OF TRX

We found that geranylgeranylacetone (GGA), which is widely used as an anti-ulcer drug, can induce TRX and that GGA suppresses ethanol-induced cytotoxicity in cultured hepatocytes via the induction of TRX and the activation of transcription factors such as NF- $\kappa$ B and AP-1 (15).

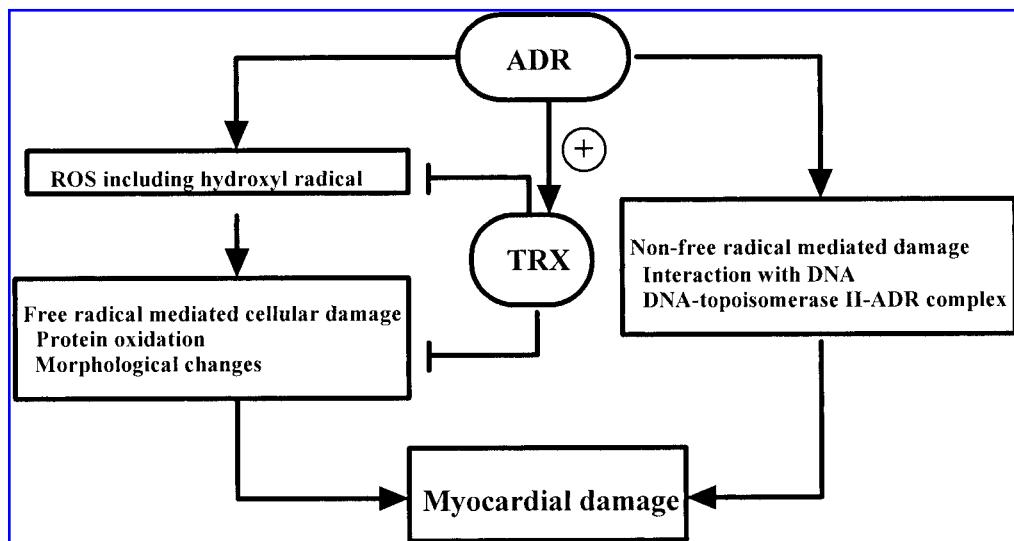

We recently reported that treatment with temocapril, a non-sulfhydryl-containing angiotensin-converting enzyme, enhances the protein expression of TRX, but not TRX2, copper/zinc-superoxide dismutase or manganese-superoxide dismutase in the myocardium of rats. Treatment with temocapril ameliorates the severity of the disease in rats with experimental autoimmune myocarditis with the reduction of protein oxidation by inducing TRX up-regulation in a preconditioning manner. Thus, treatment with temocapril ameliorates autoimmune myocarditis partially because of enhanced cardiomyocyte TRX expression (59). The supposed mechanism of temocapril against acute myocarditis via the up-regulation of TRX is described in Fig. 3. It is suggested that many drugs have cytoprotective effects via the modulation of redox state, including the up-regulation of TRX.

## TREATMENT WITH RECOMBINANT TRX OR OVEREXPRESSION OF TRX IN TRANSGENIC MICE REDUCES ROS-INDUCED CARDIOTOXICITY

Heterozygotes carrying a targeted disruption of the mouse TRX gene are viable and fertile and appear normal in mice. In contrast, homozygous mutants die shortly after implantation (23). These results suggest that TRX is essential for early differentiation and morphogenesis of the mouse embryo.

Overexpression of human TRX by the  $\beta$ -actin promoter in mice (TRX transgenic [TRX-TG] mice) prolongs life span (25). TRX-TG mice are more resistant to oxidative stress such as postischemic reperfusion injury in the brain (46), retinal photic injury (50), and 2,3,7,8-tetrachlorodibenzo-*p*-dioxin-induced hematotoxicity (57). Moreover, specific overexpression of human TRX by the insulin promoter in pancreatic islet  $\beta$ -cells in mice prevents autoimmune or streptozotocin-induced diabetes *in vivo* (17).

Treatment with recombinant human TRX reduces hypoxia-reoxygenation injury in murine endothelial cells *in vitro*. In an *in vivo* study, treatment with recombinant human TRX also protects against retinal photic injury in mice (49), against reperfusion injury in canine lung transplantation (55), and against reperfusion-induced arrhythmias in an isolated rat heart model (3).




**FIG. 3. The supposed mechanism of temocapril against acute myocarditis via the up-regulation of TRX.** Long-term angiotensin-converting enzyme inhibition may increase prostaglandin production and stimulate the release of nitric oxide. Nitric oxide and peroxynitrite donors induce TRX protein and mRNA (45). Excessive production of ROS at the inflammatory site contributes to myocardial damage. TRX induced by treatment with temocapril scavenges ROS, leading to the suppression of myocardial damage.

To investigate the protective role of TRX in cardiomyocytes, we subjected wild-type (WT) and TRX-TG mice to adriamycin (ADR), which induces cardiotoxicity due, at least in part, to free ROS-mediated cellular damage. The formation of hydroxyl radicals in ADR-treated heart homogenates of TRX-TG mice was decreased compared with those of WT mice. Ultrastructural morphology was better maintained in ADR-treated TRX-TG mice than in ADR-treated WT mice. For the survival study, all WT mice treated with 24 mg/kg ADR died within 6 weeks, but five of six TRX-TG mice treated with ADR survived much longer. We also showed that treatment with high-dose, but not low-dose, of recombinant human TRX1 reduced ADR-induced injury in neonatal rat cardiomyocytes *in vitro*. Accordingly, the up-regulated expression of TRX by ADR is not enough to protect the heart against ADR-induced cardiotoxicity in WT mice. However, TRX-TG mice whose TRX expressions in the hearts were 50-fold greater than those of WT mice showed attenuated ADR-induced cardiotoxicity *in vivo*, and TRX-TG mice survived longer than WT mice (Fig. 4). Accordingly, TRX has a protective role against ADR-induced cardiotoxicity by reducing oxidative stresses (40). These findings suggest that TRX and the redox system modulated by TRX have important roles in the cellular defense against oxidative stress in cardiomyocytes.

## TRX2 AND CARDIOVASCULAR DISEASES

Mammalian cells were suggested to contain only one form of TRX located in the cytosol that could be translocated to the nucleus under certain conditions. Recently, mammalian TRX localized in the mitochondria (TRX2) was cloned (42). TRX2 is more resistant to oxidation than TRX, because TRX2 lacks structural cysteine that can be oxidized to form a dimer, which



**FIG. 4. The effects of TRX on ADR-induced cardiotoxicity.** ADR has non-free radical mediated anti-tumor activity and causes free radical-mediated damage. ROS induced by ADR induce cellular damage in the heart. TRX is induced by treatment with ADR in the heart. TRX scavenges hydroxyl radical and prevents protein oxidation, which leads to prevention of ADR-induced myocardial damage in TRX-TG mice.

leads to inactivation. TRX2 is distributed with the highest expression in metabolically active tissues such as heart, skeletal muscle, and adrenal gland (42).

TRX2 is an essential gene regulating mitochondria-dependent apoptosis (47), and overexpression of TRX2 in human embryo kidney-293 cells is more resistant to etoposide-induced apoptosis (7). TRX2 plays an important role in the regulation of the mitochondrial membrane potential (7). In the paraventricular hypothalamic nucleus and reticular thalamic nucleus, treatment with dexamethasone causes elevation of the TRX2 mRNA level (36). In the heart, the expression of TRX2 protein is not up-regulated in acute myocarditis (59) or ADR-induced cardiotoxicity (authors unpublished data).

### TRX-BINDING PROTEINS AND CARDIOVASCULAR DISEASES

We identified several TRX-binding proteins (TBPs) by the yeast two-hybrid system. TBP-1 is p40phox, a cytosolic component of phagocyte NADPH oxidase (33). TBP-2 is identical to a protein reported previously as a vitamin D<sub>3</sub> up-regulated protein-1 (32). TBP-2 expression is induced in HL-60 cells treated with vitamin D<sub>3</sub>, although TRX expression is suppressed. Transfection of TBP-2 suppresses the protein expression and insulin-reducing activity of TRX. TBP-2 can bind only to the reduced form of TRX, and the C32S/C35S mutant of TRX in its active site fails to bind with TBP-2 (32). Another study reported that overexpression of TBP-2 inhibits the TRX-dependent suppression of c-Jun N-terminal kinase activity and the interaction of TRX with ASK-1. In addition, overexpression of TBP-2 induces apoptotic cell death by treatment with tumor necrosis factor or hydrogen peroxide (18). Therefore, TBP-2 is a kind of endogenous negative modulator of TRX (Fig. 1).

Lee and co-workers reported that biochemical strain or hydrogen peroxide suppresses the expressions of TBP-2 protein and mRNA in rat primary cardiomyocytes. Overexpression of TBP-2 induces apoptosis of cardiomyocytes and sensitizes cells to oxidative stress-induced apoptosis, suggesting that TBP-2 acts a key molecule as an environmental stress-mediated regulator of cardiomyocyte viability (54). They also reported that overexpression of TBP-2 blocks platelet-derived growth factor-induced cell growth through the suppression of TRX activity in human aortic smooth muscle cells (38). It was recently reported that the mRNA expression of TBP-2 is decreased in a mutant mouse strain, HcB-19/Dem, which shares features with familial combined hyperlipidemia (6). Studies are in progress to clarify the involvement of TBP-2 in the progression of atherosclerosis and cardiovascular diseases.

### CONCLUSIONS

These findings suggest that TRX and the redox system modulated by TRX1 have an important role in the cellular defense against oxidative stress in cardiovascular diseases. TRX and its family proteins have wide various effects in many biological functions. The analysis of redox regulation in biological responses will contribute to new therapeutic approaches towards cardiovascular diseases.

### ACKNOWLEDGMENTS

The authors are grateful to Dr. Chiharu Kishimoto and Prof. Toru Kita. This work was supported by grants from the Japan Foundation of Cardiovascular Research, Scientific Research from the Ministry of Education, Culture, Sports, Sci-

ence and Technology, Japan, and the Research and Development Program for New Bio-industry Initiatives.

## ABBREVIATIONS

ADF, adult T-cell leukemia-derived factor; ADR, adriamycin; AP-1, activator protein-1; ARE, antioxidant response element; ASK-1, apoptosis signal-regulating kinase-1; CRE, cyclic AMP responsive element; GGA, geranylgeranylacetone; GRX, glutaredoxin; MAP, mitogen-activated protein; NF- $\kappa$ B, nuclear factor- $\kappa$ B; NGF, nerve growth factor; Nrf2, nuclear factor-erythroid 2-related factor 2; NYHA, New York Heart Association; ORE, oxidative response element; Ref-1, redox factor-1; ROS, reactive oxygen species; TBP, TRX-binding protein; TRX, thioredoxin; TRX-TG, thioredoxin transgenic; WT, wild-type; XRE, xenobiotics responsive element.

## REFERENCES

1. Abdu A, Nakamura H, Sahaf B, Yodoi J, Holmgren A, and Rosen A. Thioredoxin blood level increases after severe burn injury. *Antioxid Redox Signal* 2: 707–716, 2000.
2. Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J, and Shigesada K. Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. *J Biol Chem* 272: 14497–14500, 1997.
3. Aota M, Matsuda K, Isowa N, Wada H, Yodoi J, and Ban T. Protection against reperfusion-induced arrhythmias by human thioredoxin. *J Cardiovasc Pharmacol* 27: 727–732, 1996.
4. Bai J, Nakamura H, Kwon WY, Hattori I, Yamaguchi Y, Kim YC, Kondo N, Oka S, Ueda S, Masutani H, and Yodoi J. Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC 12 cells. *J Neurosci* 23: 503–509, 2003.
5. Bertini R, Howard OM, Dong HF, Oppenheim JJ, Bizzarri C, Sergi R, Caselli G, Pagliei S, Romines B, Wilshire JA, Mengozzi M, Nakamura H, Yodoi J, Pekkari K, Gurunath R, Holmgren A, Herzenberg LA, Herzenberg LA, and Ghezzi P. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. *J Exp Med* 189: 1783–1789, 1999.
6. Bodnar JS, Chatterjee A, Castellani LW, Ross DA, Ohmen J, Cavalcoli J, Wu C, Dains KM, Catanese J, Chu M, Sheth SS, Charugundla K, Demant P, West DB, de Jong P, and Lusis AJ. Positional cloning of the combined hyperlipidemia gene *Hyplip1*. *Nat Genet* 30: 110–116, 2002.
7. Damdimopoulos AE, Miranda-Vizcute A, Pelto-Huikko M, Gustafsson JA, and Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. *J Biol Chem* 277: 33249–33257, 2002.
8. Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, and Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. *Nat Cell Biol* 4: 743–749, 2002.
9. Hall JL, Wang X, Zhao Y, and Gibbons GH. Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor- $\kappa$ B-independent and -dependent pathways. *Circ Res* 88: 1247–1253, 2001.
10. Hashimoto S, Matsumoto K, Gon Y, Furuchi S, Maruoka S, Takeshita I, Hirota K, Yodoi J, and Horie T. Thioredoxin negatively regulates p38 MAP kinase activation and IL-6 production by tumor necrosis factor-alpha. *Biochem Biophys Res Commun* 258: 443–447, 1999.
11. Heppell-Parton A, Cahn A, Bench A, Lowe N, Lehrach H, Zehetner G, and Rabbitts P. Thioredoxin, a mediator of growth inhibition, maps to 9q31. *Genomics* 26: 379–381, 1995.
12. Hiraoka Y, Kishimoto C, Kurokawa M, Ochiai H, and Sasayama S. Effects of polyethylene glycol conjugated superoxide dismutase on coxsackievirus B3 myocarditis in mice. *Cardiovasc Res* 26: 956–961, 1992.
13. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, and Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. *Proc Natl Acad Sci U S A* 94: 3633–3638, 1997.
14. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, and Yodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF- $\kappa$ B. *J Biol Chem* 274: 27891–27897, 1999.
15. Hirota K, Nakamura H, Arai T, Ishii H, Bai J, Itoh T, Fukuda K, and Yodoi J. Geranylgeranylacetone enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. *Biochem Biophys Res Commun* 275: 825–830, 2000.
16. Holmgren A. Thioredoxin. *Annu Rev Biochem* 54: 237–271, 1985.
17. Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, and Miyazaki J. Pancreatic  $\beta$  cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. *J Exp Med* 188: 1445–1451, 1998.
18. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD, Kim DK, Lee KW, Han PL, Rhee SG, and Choi I. Vitamin D<sub>3</sub> up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. *J Immunol* 164: 6287–6295, 2000.
19. Kaghad M, Dessarps F, Jacquemin-Sablon H, Caput D, Fradelizi D, and Wollman EE. Genomic cloning of human thioredoxin-encoding gene: mapping of the transcription start point and analysis of the promoter. *Gene* 140: 273–238, 1994.
20. Kim YC, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, and Yodoi J. Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors. *J Biol Chem* 276: 18399–18406, 2001.
21. Kishimoto C, Shioji K, Nakamura H, Nakayama Y, Yodoi J, and Sasayama S. Serum thioredoxin (TRX) levels in patients with heart failure. *Jpn Circ J* 65: 491–494, 2001.

22. Liu Y and Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. *Circ Res* 90: 1259–1266, 2002.

23. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, and Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. *Dev Biol* 178: 179–185, 1996.

24. Maurice MM, Nakamura H, Gringhuis S, Okamoto T, Yoshida S, Kullmann F, Lechner S, van der Voort EA, Leow A, Versendaal J, Muller-Ladner U, Yodoi J, Tak PP, Breedveld FC, and Verweij CL. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. *Arthritis Rheum* 42: 2430–2439, 1999.

25. Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, and Yodoi J. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. *Antioxid Redox Signal* 4: 693–696, 2002.

26. Nakamura H, Matsuda M, Furuke K, Kitaoka Y, Iwata S, Toda K, Inamoto T, Yamaoka Y, Ozawa K, and Yodoi J. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. *Immunol Lett* 42: 75–80, 1994.

27. Nakamura H, De Rosa SC, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, Herzenberg LA, and Herzenberg LA. Elevation of plasma thioredoxin levels in HIV-infected individuals. *Int Immunol* 8: 603–611, 1996.

28. Nakamura H, Nakamura K, and Yodoi J. Redox regulation of cellular activation. *Annu Rev Immunol* 15: 351–369, 1997.

29. Nakamura H, Vaage J, Valen G, Padilla CA, Bjornstedt M, and Holmgren A. Measurements of plasma glutaredoxin and thioredoxin in healthy volunteers and during open-heart surgery. *Free Radic Biol Med* 24: 1176–1186, 1998.

30. Nakamura H, De Rosa SC, Yodoi J, Holmgren A, Ghezzi P, Herzenberg LA, and Herzenberg LA. Chronic elevation of plasma thioredoxin: inhibition of chemotaxis and curtailment of life expectancy in AIDS. *Proc Natl Acad Sci U S A* 98: 2688–2693, 2001.

31. Nakamura H, Herzenberg LA, Bai J, Araya S, Kondo N, Nishinaka Y, Herzenberg LA, and Yodoi J. Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. *Proc Natl Acad Sci U S A* 98: 15143–15148, 2001.

32. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, and Yodoi J. Identification of thioredoxin-binding protein-2/vitamin D<sub>3</sub> up-regulated protein 1 as a negative regulator of thioredoxin function and expression. *J Biol Chem* 274: 21645–21650, 1999.

33. Nishiyama A, Ohno T, Iwata S, Matsui M, Hirota K, Masutani H, Nakamura H, and Yodoi J. Demonstration of the interaction of thioredoxin with p40phox, a phagocyte oxidase component, using two-hybrid system. *Immunol Lett* 68: 155–159, 1999.

34. Okuda M, Inoue N, Azumi H, Seno T, Sumi Y, Hirata K, Kawashima S, Hayashi Y, Itoh H, Yodoi J, and Yokoyama M. Expression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis. *Arterioscler Thromb Vasc Biol* 21: 1483–1487, 2001.

35. Pekkari K, Gurunath R, Arner ES, and Holmgren A. Truncated thioredoxin is a mitogenic cytokine for resting human peripheral blood mononuclear cells and is present in human plasma. *J Biol Chem* 275: 37474–37480, 2000.

36. Rybnikova E, Damdimopoulos AE, Gustafsson JA, Spyrou G, and Pelto-Huikko M. Expression of novel antioxidant thioredoxin-2 in the rat brain. *Eur J Neurosci* 12: 1669–1678, 2000.

37. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, and Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. *EMBO J* 17: 2596–2606, 1998.

38. Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, and Lee RT. Vitamin D<sub>3</sub>-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. *Circ Res* 91: 689–695, 2002.

39. Shioji K, Kishimoto C, Nakamura H, Toyokuni S, Nakayama Y, Yodoi J, and Sasayama S. Upregulation of thioredoxin (TRX) expression in giant cell myocarditis in rats. *FEBS Lett* 472: 109–113, 2000.

40. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, and Yodoi J. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. *Circulation* 106: 1403–1409, 2002.

41. Shioji K, Matsuura Y, Iwase T, Kitaguchi S, Nakamura H, Yodoi J, Hashimoto T, Kawai C, and Kishimoto C. Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thioredoxin. A case report. *Circ J* 66: 977–980, 2002.

42. Spyrou G, Enmark E, Miranda-Vizcute A, and Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. *J Biol Chem* 272: 2936–2941, 1997.

43. Sumida Y, Nakashima T, Yoh T, Nakajima Y, Ishikawa H, Mitsuyoshi H, Sakamoto Y, Okanoue T, Kashima K, Nakamura H, and Yodoi J. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. *J Hepatol* 33: 616–622, 2000.

44. Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, and Yodoi J. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. *EMBO J* 8: 757–764, 1989.

45. Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H, Hashimoto N, Kikuchi H, and Yodoi J. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. *Lab Invest* 78: 957–966, 1998.

46. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, and Yodoi J. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. *Proc Natl Acad Sci U S A* 96: 4131–4136, 1999.

47. Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou

G, and Yodoi J. Thioredoxin-2(TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. *EMBO J* 21: 1695–1703, 2002.

48. Taniguchi Y, Taniguchi-Ueda Y, Mori K, and Yodoi J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. *Nucleic Acids Res* 24: 2746–2752, 1996.

49. Tanito M, Masutani H, Nakamura H, Ohira A, and Yodoi J. Cytoprotective effect of thioredoxin against retinal photic injury in mice. *Invest Ophthalmol Vis Sci* 43: 1162–1167, 2002.

50. Tanito M, Masutani H, Nakamura H, Oka S, Ohira A, and Yodoi J. Attenuation of retinal photooxidative damage in thioredoxin transgenic mice. *Neurosci Lett* 326: 142–146, 2002.

51. Teshigawara K, Maeda M, Nishino K, Nikaido T, Uchiyama T, Tsudo M, Wano Y, and Yodoi J. Adult T leukemia cells produce a lymphokine that augments interleukin 2 receptor expression. *J Mol Cell Immunol* 2: 17–26, 1985.

52. Ueda S, Nakamura H, Masutani H, Sasada T, Yonehara S, Takabayashi A, Yamaoka Y, and Yodoi J. Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. *J Immunol* 161: 6689–6695, 1998.

53. Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, and Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. *J Biol Chem* 274: 35809–35815, 1999.

54. Wang Y, De Keulenaer GW, and Lee RT. Vitamin D<sub>3</sub>-upregulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. *J Biol Chem* 277: 26496–26500, 2002.

55. Yagi K, Liu C, Bando T, Yokomise H, Inui K, Hitomi S, and Wada H. Inhibition of reperfusion injury by human thioredoxin (adult T-cell leukemia-derived factor) in canine lung transplantation. *J Thorac Cardiovasc Surg* 108: 913–921, 1994.

56. Yodoi J and Uchiyama T. Diseases associated with HTLV-I: virus, IL-2 receptor dysregulation and redox regulation. *Immunol Today* 13: 405–411, 1992.

57. Yoon BI, Hirabayashi Y, Kaneko T, Kodama Y, Kanno J, Yodoi J, Kim DY, and Inoue T. Transgene expression of thioredoxin(TRX/ADF) protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hematotoxicity. *Arch Environ Contam Toxicol* 41: 232–236, 2001.

58. Yoshida S, Katoh T, Tetsuka T, Uno K, Matsui N, and Okamoto T. Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF-alpha-induced production of IL-6 and IL-8 from cultured synovial fibroblasts. *J Immunol* 163: 351–358, 1999.

59. Yuan Z, Kishimoto C, Shioji K, Nakamura H, Yodoi J, and Sasayama S. Temocapril treatment ameliorates autoimmune myocarditis associated with enhanced cardiomyocyte thioredoxin expression. *Cardiovasc Res* 55: 320–328, 2002.

Address reprint requests to:

Dr. Junji Yodoi

Department of Biological Responses  
Institute for Virus Research

Kyoto University  
53, Kawaracho, Shogoin, Sakyo-ku  
Kyoto 606-8507, Japan

E-mail: yodoi@virus.kyoto-u.ac.jp

Received November 14, 2002; accepted August 1, 2003.

**This article has been cited by:**

1. Changgong Wu , Andrew M. Parrott , Cexiong Fu , Tong Liu , Stefano M. Marino , Vadim N. Gladyshev , Mohit R. Jain , Ahmet T. Baykal , Qing Li , Shinichi Oka , Junichi Sadoshima , Annie Beuve , William J. Simmons , Hong Li . 2011. Thioredoxin 1-Mediated Post-Translational Modifications: Reduction, Transnitrosylation, Denitrosylation, and Related Proteomics Methodologies. *Antioxidants & Redox Signaling* **15**:9, 2565-2604. [\[Abstract\]](#) [\[Full Text HTML\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#) [\[Supplemental material\]](#)
2. Po Yee Chiu, Na Chen, Po Kuan Leong, Hoi Yan Leung, Kam Ming Ko. 2011. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells. *Molecular and Cellular Biochemistry* **350**:1-2, 237-250. [\[CrossRef\]](#)
3. Douglas B. Sawyer, Chang-seng Liang, Wilson S. ColucciOxidative and Nitrosative Stress in Heart Failure 185-197. [\[CrossRef\]](#)
4. Manabu Tsuda, Ryousuke Ootaka, Chiaki Ohkura, Yoshihito Kishita, Ki-Hyeon Seong, Takashi Matsuo, Toshiro Aigaki. 2010. Loss of Trx-2 enhances oxidative stress-dependent phenotypes in Drosophila. *FEBS Letters* **584**:15, 3398-3401. [\[CrossRef\]](#)
5. Christopher Koczor, James Kohler, William Lewis. 2010. Transgenic mouse models of mitochondrial toxicity associated with HIV/AIDS and antiretrovirals. *Methods* **51**:4, 399-404. [\[CrossRef\]](#)
6. Ekambaram Padmini, Munuswamy Usha Rani. 2010. Thioredoxin and HSP90# modulate ASK1–JNK1/2 signaling in stressed hepatocytes of Mugil cephalus. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology* **151**:2, 187-193. [\[CrossRef\]](#)
7. Keon-Jae Park, Yeon-Jeong Kim, Eun Ju Choi, No Kwan Park, Gi Hyun Kim, Sang Min Kim, Sang Yeub Lee, Jang-Whan Bae, Kyung-Kuk Hwang, Dong-Woon Kim, Myeong-Chan Cho. 2010. Expression Pattern of the Thioredoxin System in Human Endothelial Progenitor Cells and Endothelial Cells Under Hypoxic Injury. *Korean Circulation Journal* **40**:12, 651. [\[CrossRef\]](#)
8. Md. Kaimul Ahsan , Hajime Nakamura , Junji Yodoi Redox Regulation by Thioredoxin in Cardiovascular Diseases 159-165. [\[Abstract\]](#) [\[Summary\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
9. Md. Kaimul Ahsan , Istvan Lekli , Diptarka Ray , Junji Yodoi , Dipak K. Das . 2009. Redox Regulation of Cell Survival by the Thioredoxin Superfamily: An Implication of Redox Gene Therapy in the Heart. *Antioxidants & Redox Signaling* **11**:11, 2741-2758. [\[Abstract\]](#) [\[Full Text HTML\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
10. Nobuya Okami, Takakazu Kawamata, Gou Yamamoto, Yoshikazu Okada, Tomokatsu Hori, Tetsuhiko Tachikawa. 2009. Laser microdissection-based analysis of hypoxia- and thioredoxin-related genes in human stable carotid plaques. *Cardiovascular Pathology* **18**:5, 294-300. [\[CrossRef\]](#)
11. Joachim Altschmied , Judith Haendeler . 2009. Thioredoxin-1 and Endothelial Cell Aging: Role in Cardiovascular Diseases. *Antioxidants & Redox Signaling* **11**:7, 1733-1740. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
12. Ravi Nistala , Adam Whaley-Connell , James R. Sowers . 2008. Redox Control of Renal Function and Hypertension. *Antioxidants & Redox Signaling* **10**:12, 2047-2089. [\[Abstract\]](#) [\[Full Text HTML\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
13. Gerd Schmitz , Margot Grandl . 2007. Role of Redox Regulation and Lipid Rafts in Macrophages During Ox-LDL–Mediated Foam Cell Formation. *Antioxidants & Redox Signaling* **9**:9, 1499-1518. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
14. Hangxiang Zhang, Ling Tao, Xiangying Jiao, Erhe Gao, Bernard L. Lopez, Theodore A. Christopher, Walter Koch, Xin L. Ma. 2007. Nitratative thioredoxin inactivation as a cause of enhanced myocardial ischemia/reperfusion injury in the aging heart. *Free Radical Biology and Medicine* **43**:1, 39-47. [\[CrossRef\]](#)

15. Talin Ebrahimian, Ying He, Ernesto L Schiffrin, Rhian M Touyz. 2007. Differential regulation of thioredoxin and NAD(P)H oxidase by angiotensin II in male and female mice. *Journal of Hypertension* **25**:6, 1263-1271. [\[CrossRef\]](#)
16. Christopher Horst Lillig , Arne Holmgren . 2007. Thioredoxin and Related Molecules–From Biology to Health and Disease. *Antioxidants & Redox Signaling* **9**:1, 25-47. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
17. Tetsuro Ago , Ijen Yeh , Mitsutaka Yamamoto , Martina Schinke-Braun , Jeffrey A. Brown , Bin Tian , Junichi Sadoshima . 2006. Thioredoxin1 Upregulates Mitochondrial Proteins Related to Oxidative Phosphorylation and TCA Cycle in the Heart. *Antioxidants & Redox Signaling* **8**:9-10, 1635-1650. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
18. Daniel Hägg, Mikael C.O. Englund, Margareta Jernås, Caroline Schmidt, Olov Wiklund, Lillemor Mattsson Hultén, Bertil G. Ohlsson, Lena M.S. Carlsson, Björn Carlsson, Per-Arne Svensson. 2006. Oxidized LDL induces a coordinated up-regulation of the glutathione and thioredoxin systems in human macrophages. *Atherosclerosis* **185**:2, 282-289. [\[CrossRef\]](#)
19. Syamal K. Bhattacharya, Robert A. Ahokas, Laura D. Carbone, Kevin P. Newman, Ivan C. Gerling, Yao Sun, Karl T. Weber. 2006. Macro- and micronutrients in African-Americans with heart failure. *Heart Failure Reviews* **11**:1, 45-55. [\[CrossRef\]](#)
20. Kevin B. Miller, Joel S. Caton, John W. Finley. 2006. Manganese depresses rat heart muscle respiration. *BioFactors* **28**:1, 33-46. [\[CrossRef\]](#)
21. Judith Haendeler. 2005. Protective role of thioredoxin-1 in cardiovascular systems. *Signal Transduction* **5**:6, 314-321. [\[CrossRef\]](#)
22. Kumuda C. Das . 2005. Thioredoxin and Its Role in Premature Newborn Biology. *Antioxidants & Redox Signaling* **7**:11-12, 1740-1743. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
23. Hajime Nakamura . 2005. Thioredoxin and Its Related Molecules: Update 2005. *Antioxidants & Redox Signaling* **7**:5-6, 823-828. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
24. Yuichiro J. Suzuki , Hiroko Nagase , Kai Nie , Ah-Mee Park . 2005. Redox Control of Growth Factor Signaling: Recent Advances in Cardiovascular Medicine. *Antioxidants & Redox Signaling* **7**:5-6, 829-834. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
25. Atsuhide Hamada, Saburo Yoshioka, Daisuke Takuma, Junko Yokota, Tailine Cui, Masahiko Kusunose, Mitsuhiro Miyamura, Shojiro Kyotani, Yutaka Nishioka. 2004. The Effect of Eriobotrya japonica Seed Extract on Oxidative Stress in Adriamycin-Induced Nephropathy in Rats. *Biological & Pharmaceutical Bulletin* **27**:12, 1961-1964. [\[CrossRef\]](#)
26. Yuichiro J. Suzuki , Kathy K. Griendling . 2003. Redox Control of Growth Factor Signaling in Heart, Lung, and Circulation. *Antioxidants & Redox Signaling* **5**:6, 689-690. [\[Citation\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
27. Dipak K. Das Methods in Redox Signaling . [\[Citation\]](#) [\[Full Text HTML\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)