
INTRODUCTION

HUMAN THIOREDOXIN (TRX) was cloned as adult T-cell
leukemia–derived factor (ADF), an inducer of interleukin-2

receptor a-chain produced by human T-cell leukemia virus type-
I–transformed cells (44, 51, 56). TRX was originally reported
as a hydrogen donor for ribonucleotide reductase, an essential
enzyme for DNA synthesis in Escherichia coli. TRX is a 12-
kDa protein that has disulfide-reducing activity. Two cysteine
residues of conserved active site sequence, -Cys-Gly-Pro-
Cys- (Cys32 and Cys35), serve for its reducing activity. Re-
duced TRX has dithiols, and oxidized TRX has a disulfide
bond in this active site. Oxidized TRX is reduced by NADPH
and TRX reductase (16, 28). Recently, Haendeler et al. (8) re-
ported that S-nitrosylation at Cys69 is required for scaveng-
ing reactive oxygen species (ROS), for preserving the redox
regulatory activity, and for the anti-apoptotic function of TRX.
The TRX system, composed of TRX reductase, TRX, and
peroxiredoxin, is important in regulating the redox balance.
Increasing evidence suggests that redox (reduction and oxida-

tion) regulation by the TRX system in addition to the glu-
tathione system plays important roles in biological responses
against oxidative stresses.

TRX is a stress-inducible ubiquitous protein, which pro-
tects cells from various types of stresses, e.g., viral infection,
exposure to ultraviolet light, X-ray irradiation, and hydrogen
peroxide (26, 28) (Fig. 1). Recent studies showed that ROS
generated by a variety of oxidative stresses are not only cyto-
toxic to the cells but also important in signal transductions of
cellular activation and cell death. It is well accepted that rela-
tively low levels of oxidative stress promote cellular prolifer-
ation rather than cause degeneration or cell death. The intracel-
lular redox balance regulated by reducing factors, including
TRX, has an important role in cellular apoptosis or death (52).

TRX negatively regulates activation of p38 mitogen-activated
protein (MAP) kinase (10) and apoptosis signal-regulating
kinase-1 (ASK-1) (37). Reduced TRX binds to ASK-1 and in-
hibits its activation. When TRX is oxidized by ROS, the bind-
ing between TRX and ASK-1 is dissociated, and ASK-1 is ac-
tivated to transduce the signal of apoptosis (Fig. 1). TRX was
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reported to induce ASK-1 ubiquitination and degradation to
inhibit ASK-1-induced apoptosis (22).

TRX promotes DNA binding of transcription factors such
as activator protein-1 (AP-1) (13), nuclear factor-kB (NF-kB)
(9, 14), p53 (53), and phosphatidylethanolamine-binding
protein-2 (PEBP-2) (2). DNA binding of AP-1 is modified by
redox factor-1 (Ref-1), the activity of which is regulated by
TRX (13). TRX reduces the cysteine 62 residue of NF-kB,
which is important for the binding of NF-kB to DNA. Over-
expression of TRX in the cytoplasm suppresses NF-kB acti-
vation, whereas overexpression of TRX in the nucleus en-
hances DNA binding of NF-kB (14). Overexpression of Ref-1
inhibits hypoxia or tumor necrosis factor-induced endothelial
cell apoptosis through NF-kB-independent and -dependent
pathways (9). The TRX–Ref-1 cascade interacts with p53, a
gatekeeper against DNA damage and an inducer of G1 arrest,
to afford cells time to repair damaged cells, and up-regulates
p53-dependent p21 expression in response to oxidative stress
(53). Accordingly, the redox status balanced by generated
ROS and endogenous antioxidants plays a crucial role in the
regulation of signal transduction in biological responses.

The gene encoding human TRX was reported to be mapped
to 9q31 on chromosome 9 (11).The promoter region of the
human TRX gene has the SP-1 site, the cyclic AMP responsive
element (CRE), and the oxidative responsive element (ORE)
in the 59 flanking sequence (19, 48). TRX is induced by hemin
through the binding of a transcription factor, nuclear factor-

erythroid 2-related factor 2 (Nrf2), to the antioxidant response
element (ARE) (20). Nerve growth factor (NGF) activates the
TRX gene through a regulatory region positioned from 2263
to 2217 bp, containing the CRE. Insertion of a mutation in
the CRE in this region abolishes the response to NGF. NGF
also induces binding of CRE binding protein to the CRE of
the TRX promoter (4). The promoter sequences of the TRX
gene also contain SP-1 and the xenobiotics responsive element
(XRE) (Y.W. Kwon et al., manuscript submitted).

PLASMA/SERUM TRX LEVEL AS AN
OXIDATIVE STRESS MARKER IN

CARDIOVASCULAR DISEASES

TRX is secreted from cells by a leaderless pathway. Since
TRX was cloned as ADF, a cytokine-like factor, there is accumu-
lating evidence that TRX shows cytokine-like functions. Exoge-
nous TRX enhances the cell growth by itself and shows comito-
genicity with other cytokines. TRX also shows chemokine-like
functions (5). Elevations of serum TRX levels are observed in
patients suffering from oxidative stress, for example, in patients
with HIV (27, 30), rheumatoid arthritis (24, 58), severe burn in-
jury (1), or hepatitis C virus infection (43). It is suggested that
TRX secretion into plasma may be a kind of host defense re-
sponse against oxidative stress. Truncated TRX (1–80), which
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FIG. 1. Schema of biological functions of TRX. The TRX system (TRX, TRX reductase, and NADPH) reduces peroxiredoxin
or oxidized proteins. Peroxiredoxin catalyzes the reduction of hydrogen peroxide. TRX has interactions with ASK-1, the p38
MAP kinase (MAPK) pathway, or p40phox (TBP-1) in cytosol. Oxidative stresses induce TRX expression and nuclear transloca-
tion of TRX. In the nucleus, TRX has interactions with transcription factors or TBP-2/VDUP-1. Oxidized TRX or truncated TRX
is considered to be extracellularly secreted.
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was isolated as eosinophil cytotoxicity-enhancing factor, was re-
ported to act as an inducer of cytokine expression (Fig. 1) (35).

We previously documented that the level of plasma oxi-
dized TRX is increased during reperfusion of the postcardio-
plegic heart because of systematic oxidative stress (29). We
investigated the clinical significance of the serum TRX levels
of patients with heart failure (21). The serum TRX level in
patients with III and IV functional classes of New York Heart
Association (NYHA) was significantly higher than in the con-
trol subjects (Fig. 2A). In addition, the serum TRX levels are
negatively correlated with left ventricular ejection fractions
of the patients (Fig. 2B). The serum TRX levels are elevated

in patients with acute coronary syndrome or dilated cardio-
myopathy compared with the control.

Recently, we reported that the serum level of TRX is high
during the acute phase, and slowly decreases during the chronic
phase in a patient with fulminant myocarditis (41). Circulat-
ing TRX inhibits the neutrophil recruitment into the inflam-
matory site in the mouse air pouch model (31). Therefore, it
is possible that the elevation of serum TRX in patients with
myocarditis is associated with not only the host defense re-
sponse against oxidative stress, but also the inhibition of the
neutrophil recruitment into the myocarditis lesion.

In conclusion, these results suggest the possible associa-
tion between the elevated level of TRX and the severity of
heart failure. The measurement of plasma/serum TRX levels
is one of the useful tools to check how much the host is suf-
fering from oxidative stress in patients with heart failure.

UP-REGULATION OF TRX IN
ATHEROSCLEROSIS

We reported that the expressions of TRX protein and TRX
mRNA are enhanced in endothelial cells and macrophages in
human atherosclerotic plaques, but not in nonatherosclerotic
lesions (45). In atherosclerotic lesions of autopsy samples of
human coronary arteries, Okuda et al. (34) reported that infil-
trating macrophages highly express TRX in addition to glutare-
doxin (GRX), which catalyzes protein disulfide reductions
coupled with glutathione, glutathione reductase, and NADPH.
The expressions of TRX protein and TRX mRNA are also in-
creased after injury in the neointimal regenerating endothe-
lial cells of balloon-injured rat arteries (45).

Accordingly, the development of atherosclerosis, neointi-
mal hyperplasia after vascular injury, may be, at least in part,
regulated by the cellular redox states via thiol-disulfide oxi-
doreductases such as TRX and GRX.

UP-REGULATION OF TRX IN
INFLAMMATORY MYOCARDITIS

Excessive production of ROS at the inflammatory site con-
tributes to the inflammatory process by induction of the ex-
pression of adhesion molecules, proinflammatory cytokines,
and chemoattractants. An ROS scavenger such as superoxide
dismutase has a therapeutic potential for myocarditis (12).

We demonstrated that the expression of TRX protein is up-
regulated in association with an oxidative stress marker, 8-
hydroxy-29-deoxyguanosine, in infiltrating cells and damaged
myocytes in rats with giant cell myocarditis during the acute
stage (39). Since the expression of NF-kB is also up-regu-
lated in damaged myocytes, TRX may have a protective role
against the progressive myocardial damage in cardiomyocytes
during acute inflammatory myocarditis through the activation
of NF-kB. We also reported that the expression of TRX pro-
tein is increased in inflammatory cells and cardiomyocytes of
left ventricular biopsy samples in a patient with fulminant
myocarditis (41). Accordingly, acute inflammatory myocardi-
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FIG. 2. Serum TRX levels with heart failure. (A) Compari-
son of serum TRX levels among patients with NYHA func-
tional class I (n = 17, 19.1 ± 8.5 ng/ml), II (n = 5, 21.9 ± 8.5
ng/ml), and III plus IV (n = 8, 33.3 ± 8.6 ng/ml) and control
subjects (n = 4, 13.0 ± 4.9 ng/ml). Significant differences were
found between patients with NYHA III plus IV and control
subjects, but no significant differences were found between pa-
tients with NYHA I or II and control subjects. (B) The relation
between serum TRX levels and left ventricular ejection frac-
tions (EF). The serum TRX levels were inversely correlated
with EF (r = 0.59, p < 0.001) in all subjects. Bold lines indicate
±95% reliability zone.
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tis may be, at least partly, regulated by the cellular redox state
via TRX.

CARDIOVASCULAR DRUGS HAVE
CYTOPROTECTIVE EFFECTS IN

CARDIOMYOCYTES THROUGH THE 
UP-REGULATION OF TRX

We found that geranylgeranylacetone (GGA), which is
widely used as an anti-ulcer drug, can induce TRX and that
GGA suppresses ethanol-induced cytotoxicity in cultured he-
patocytes via the induction of TRX and the activation of tran-
scription factors such as NF-kB and AP-1 (15).

We recently reported that treatment with temocapril, a non-
sulfhydryl-containing angiotensin-converting enzyme, enhances
the protein expression of TRX, but not TRX2, copper/zinc-
superoxide dismutase or manganese-superoxide dismutase in
the myocardium of rats. Treatment with temocapril amelio-
rates the severity of the disease in rats with experimental au-
toimmune myocarditis with the reduction of protein oxidation
by inducing TRX up-regulation in a preconditioning manner.
Thus, treatment with temocapril ameliorates autoimmune my-
ocarditis partially because of enhanced cardiomyocyte TRX
expression (59). The supposed mechanism of temocapril
against acute myocarditis via the up-regulation of TRX is de-
scribed in Fig. 3. It is suggested that many drugs have cyto-
protective effects via the modulation of redox state, including
the up-regulation of TRX.

TREATMENT WITH RECOMBINANT TRX
OR OVEREXPRESSION OF TRX IN

TRANSGENIC MICE REDUCES ROS-
INDUCED CARDIOTOXICITY

Heterozygotes carrying a targeted disruption of the mouse
TRX gene are viable and fertile and appear normal in mice.
In contrast, homozygous mutants die shortly after implanta-
tion (23). These results suggest that TRX is essential for early
differentiation and morphogenesis of the mouse embryo.

Overexpression of human TRX by the b-actin promoter in
mice (TRX transgenic [TRX-TG] mice) prolongs life span
(25). TRX-TG mice are more resistant to oxidative stress such
as postischemic reperfusion injury in the brain (46), retinal
photic injury (50), and 2,3,7,8-tetrachlorodibenzo-p-dioxin-
induced hematotoxicity (57). Moreover, specific overexpres-
sion of human TRX by the insulin promoter in pancreatic islet
b-cells in mice prevents autoimmune or streptozotocin-induced
diabetes in vivo (17).

Treatment with recombinant human TRX reduces hypoxia–
reoxygenation injury in murine endothelial cells in vitro. In
an in vivo study, treatment with recombinant human TRX also
protects against retinal photic injury in mice (49), against
reperfusion injury in canine lung transplantation (55), and
against reperfusion-induced arrhythmias in an isolated rat
heart model (3).

To investigate the protective role of TRX in cardiomyo-
cytes, we subjected wild-type (WT) and TRX-TG mice to
adriamycin (ADR), which induces cardiotoxicity due, at least
in part, to free ROS-mediated cellular damage. The formation
of hydroxyl radicals in ADR-treated heart homogenates of
TRX-TG mice was decreased compared with those of WT
mice. Ultrastructural morphology was better maintained in
ADR-treated TRX-TG mice than in ADR-treated WT mice.
For the survival study, all WT mice treated with 24 mg/kg ADR
died within 6 weeks, but five of six TRX-TG mice treated
with ADR survived much longer. We also showed that treat-
ment with high-dose, but not low-dose, of recombinant human
TRX1 reduced ADR-induced injury in neonatal rat cardiomy-
ocytes in vitro. Accordingly, the up-regulated expression of
TRX by ADR is not enough to protect the heart against ADR-
induced cardiotoxicity in WT mice. However, TRX-TG mice
whose TRX expressions in the hearts were 50-fold greater
than those of WT mice showed attenuated ADR-induced car-
diotoxicity in vivo, and TRX-TG mice survived longer than
WT mice (Fig. 4). Accordingly, TRX has a protective role
against ADR-induced cardiotoxicity by reducing oxidative
stresses (40). These f indings suggest that TRX and the redox
system modulated by TRX have important roles in the cellu-
lar defense against oxidative stress in cardiomyocytes.

TRX2 AND CARDIOVASCULAR DISEASES

Mammalian cells were suggested to contain only one form
of TRX located in the cytosol that could be translocated to the
nucleus under certain conditions. Recently, mammalian TRX
localized in the mitochondria (TRX2) was cloned (42). TRX2
is more resistant to oxidation than TRX, because TRX2 lacks
structural cysteine that can be oxidized to form a dimer, which
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FIG. 3. The supposed mechanism of temocapril against
acute myocarditis via the up-regulation of TRX. Long-term
angiotensin-converting enzyme inhibition may increase prosta-
glandin production and stimulate the release of nitric oxide.
Nitric oxide and peroxynitrite donors induce TRX protein and
mRNA (45). Excessive production of ROS at the inflammatory
site contributes to myocardial damage. TRX induced by treat-
ment with temocapril scavenges ROS, leading to the suppres-
sion of myocardial damage.
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leads to inactivation. TRX2 is distributed with the highest ex-
pression in metabolically active tissues such as heart, skeletal
muscle, and adrenal gland (42).

TRX2 is an essential gene regulating mitochondria-dependent
apoptosis (47), and overexpression of TRX2 in human em-
bryo kidney-293 cells is more resistant to etoposide-induced
apoptosis (7). TRX2 plays an important role in the regulation
of the mitochondrial membrane potential (7). In the paraven-
tricular hypothalamic nucleus and reticular thalamic nucleus,
treatment with dexamethasone causes elevation of the TRX2
mRNA level (36). In the heart, the expression of TRX2 pro-
tein is not up-regulated in acute myocarditis (59) or ADR-
induced cardiotoxicity (authors unpublished data).

TRX-BINDING PROTEINS AND
CARDIOVASCULAR DISEASES

We identified several TRX-binding proteins (TBPs) by the
yeast two-hybrid system. TBP-1 is p40phox, a cytosolic com-
ponent of phagocyte NADPH oxidase (33). TBP-2 is identical
to a protein reported previously as a vitamin D3 up-regulated
protein-1 (32). TBP-2 expression is induced in HL-60 cells
treated with vitamin D3, although TRX expression is suppressed.
Transfection of TBP-2 suppresses the protein expression and
insulin-reducing activity of TRX. TBP-2 can bind only to the
reduced form of TRX, and the C32S/C35S mutant of TRX in its
active site fails to bind with TBP-2 (32). Another study reported
that overexpression of TBP-2 inhibits the TRX-dependent sup-
pression of c-Jun N-terminal kinase activity and the interac-
tion of TRX with ASK-1. In addition, overexpression of TBP-2
induces apoptotic cell death by treatment with tumor necrosis
factor or hydrogen peroxide (18). Therefore, TBP-2 is a kind
of endogenous negative modulator of TRX (Fig. 1).

Lee and co-workers reported that biochemical strain or hy-
drogen peroxide suppresses the expressions of TBP-2 protein
and mRNA in rat primary cardiomyocytes. Overexpression of
TBP-2 induces apoptosis of cardiomyocytes and sensitizes cells
to oxidative stress-induced apoptosis, suggesting that TBP-2
acts a key molecule as a environmental stress-mediated regu-
lator of cardiomyocyte viability (54). They also reported that
overexpression of TBP-2 blocks platelet-derived growth factor–
induced cell growth through the suppression of TRX activity
in human aortic smooth muscle cells (38). It was recently re-
ported that the mRNA expression of TBP-2 is decreased in a
mutant mouse strain, HcB-19/Dem, which shares features with
familial combined hyperlipidemia (6). Studies are in progress
to clarify the involvement of TBP-2 in the progression of ath-
erosclerosis and cardiovascular diseases.

CONCLUSIONS

These findings suggest that TRX and the redox system
modulated by TRX1 have an important role in the cellular de-
fense against oxidative stress in cardiovascular diseases. TRX
and its family proteins have wide various effects in many bio-
logical functions. The analysis of redox regulation in biologi-
cal responses will contribute to new therapeutic approaches
towards cardiovascular diseases.
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FIG. 4. The effects of TRX on ADR-induced cardiotoxicity. ADR has non–free radical mediated anti-tumor activity and
causes free radical-mediated damage. ROS induced by ADR induce cellular damage in the heart. TRX is induced by treatment
with ADR in the heart. TRX scavenges hydroxyl radical and prevents protein oxidation, which leads to prevention of ADR-
induced myocardial damage in TRX-TG mice.

http://www.liebertonline.com/action/showImage?doi=10.1089/152308603770380106&iName=master.img-005.png&w=379&h=200


ence and Technology, Japan, and the Research and Develop-
ment Program for New Bio-industry Initiatives.

ABBREVIATIONS

ADF, adult T-cell leukemia–derived factor; ADR, adria-
mycin; AP-1, activator protein-1; ARE, antioxidant response
element; ASK-1, apoptosis signal-regulating kinase-1; CRE,
cyclic AMP responsive element; GGA, geranylgeranylacetone;
GRX, glutaredoxin; MAP, mitogen-activated protein; NF-kB,
nuclear factor-kB; NGF, nerve growth factor; Nrf2, nuclear
factor-erythroid 2-related factor 2; NYHA, New York Heart
Association; ORE, oxidative response element; Ref-1, redox
factor-1; ROS, reactive oxygen species; TBP, TRX-binding
protein; TRX, thioredoxin; TRX-TG, thioredoxin transgenic;
WT, wild-type; XRE, xenobiotics responsive element.
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